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Figure 1: Examples of non-linear projections: a paraboloid projection shadow map (left), a cosine-sphere projection (center), and a photo-
graphic fish-eye lens used for direct rendering of the scene (right).

Abstract

Linear perspective projections are used extensively in graphics.
They provide a non-distorted view, with simple computations that
map easily to hardware. Non-linear projections, such as the view
given by a fish-eye lens are also used, either for artistic reasons or in
order to provide a larger field of view, e.g. to approximate environ-
ment reflections or omnidirectional shadow maps. As the compu-
tations related to non-linear projections are more involved, they are
harder to implement, especially in hardware, and have found little
use so far in practical applications. In this paper, we apply existing
methods for non-linear projections [Lloyd et al. 2006; Hou et al.
2006; Fournier 2005] to a specific class: non-linear projections with
a single center of projection, radial symmetry and convexity. This
class includes, but is not limited to, paraboloid projections, hemi-
spherical projections and fish-eye lenses. We show that, for this
class, the projection of a 3D triangle is a single curved triangle, and
we give a mathematical analysis of the curved edges of the triangle;
this analysis allows us to reduce the computations involved, and
to provide a faster implementation. The overhead for non-linearity
is bearable and can be balanced with the fact that a single non-
linear projection can replaces as many as five linear projections (in
a hemicube), with less discontinuities and a smaller memory cost,
thus making non-linear projections a practical alternative.
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1 Introduction

Most graphics software works with a three dimensional representa-
tion of a virtual world and use a two-dimensional device to display
it. The projection step does the conversion from the 3D representa-
tion to a 2D display. It is an essential step of the graphics pipeline.
Usually, this projection step is done using linear transforms (in ho-
mogeneous coordinates). These transforms are very easy to code,
and transform lines into lines and triangles into triangles. But non-
linear projections are also used, either to give a larger field-of-view
(e.g. for environment maps or for ominidirectional shadow maps),
or for artistic reasons. In the absence of a fast algorithm for com-
puting non-linear projections, programmers resorted to either con-
version from a cube map, or software rasterization.

In this paper, we adapt existing methods for non-linear projec-
tions [Lloyd et al. 2006; Hou et al. 2006; Fournier 2005] to a spe-
cific class of projections. By restricting ourselves to projections
with a single center of projection, radial symmetry and convexity,
we get the useful property that each triangle in 3D is converted to
a single curved triangle in screen space, making the whole process
easier. We provide mathematical analysis for several projections in-
side this class, such as the paraboloid projection, the cosine-sphere
projection, Lambert conformal projection and two fish-eye lenses.

We have found that non-linear projections are, understandably,
slower than their linear counterparts. However, for the projections
we have studied, the extra cost remains manageable. As a single
non-linear projection can be used to replace up to 5 renderings (in
a hemicube), it can even be a practical alternative.

Our paper is organized as follows: in the next session, we review
previous work on the computation and use of non-linear projec-
tions. In section 3, we present our algorithm for computing non-
linear projections. In section 4, we review several practical non-
linear projections along with their mathematical properties. In sec-
tion 5, we conduct an experimental study our algorithm. Finally, in
section 6, we conclude and present directions for future work.
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2 Previous Work

Non-linear projections predate Computer Graphics. In the field of
mathematics, Lambert [1772] designed several non-linear projec-
tions, mainly for use in cartography. He designed them so that they
maintain an important property, such as area preservation or an-
gle preservation. Fish-eye lenses, used in photography to present
a very large field-of-view (up to π), represent another example of
non-linear projections [Kumler and Bauer 2000].

Inside Computer Graphics, the cosine-sphere projection is often
used in lighting computations [Kautz et al. 2004], as the area cov-
ered by the objects on the screen is proportional to the light they are
reflecting toward to the sampling point. The paraboloid projection,
introduced by Heidrich and Seidel [1998] has two advantages: first,
it is mapping a large field-of-view (π) with minimal area distor-
tions, and second it is possible to retrieve information using linear
tools.

However, computing an actual non-linear projection is a diffi-
cult problem. In recent years, Kautz et al. [2004] used an op-
timized software rasterizer to compute local occlusion (using the
cosine-sphere projection method). Brabec et al. [2002] used the
paraboloid projection of [Heidrich and Seidel 1998] for omnidirec-
tional shadow maps. Osman et al. [2006] showed how this projec-
tion can be used in practice for video games, and Laine et al. [2007]
used the same projection for fast computations of indirect lighting.
As they could not compute a complete non-linear projection, they
did so by computing the correct projection for all the vertices, fol-
lowed by a linear interpolation. This method forces them to tesse-
late the scene into small triangles, at the expense of computation
time.

Hou et al. [2006] computed specular reflections on curved sur-
faces by computing the non-linear projections associated with them.
They interpolates between non-linear projections, and computes
each projection by enclosing the reflected triangle into an enclos-
ing shape, then discarding the extra fragments. The main drawback
is that they render every scene triangle for every camera, resulting
in a large number of triangles rendered. Lloyd et al. [2006; 2007]
introduced a logarithmic non-linear projection method for optimal
sampling in shadow maps and present different methods for practi-
cal rasterization on the GPU, including enclosing each projected tri-
angle into an enclosing shape, then discarding the extra fragments.

Our work shares some similarities with previous work[Lloyd et al.
2006; Hou et al. 2006; Fournier 2005], including the use of an en-
closing shape for non-linear projection. Compared to these previ-
ous work, the specific of our work is that by restricting ourselves
to a specific class of non-linear projections with a single center of
projection, we are able to provide a tighter bounding shape. Espe-
cially, the projection of a triangle is always a single curved triangle,
and we render each scene triangle only once. We offer a compre-
hensive mathematical analysis of the projection methods, giving the
equation of a curved edge, providing tighter bounds.

3 The algorithm

3.1 Overview of the Algorithm

The core of our algorithm is identical to previous work [Lloyd et al.
2006; Hou et al. 2006; Fournier 2005] (see Fig. 2 for pseudo-code);
we treat each primitive separately. Each graphics primitive (usually
a triangle) will be projected into a non-linear shape (a curved trian-
gle). We first compute a bounding shape for the projection of the
primitive, then for each fragment in the bounding shape, we back-
project it to the plane of the original primitive, and test whether it

for each graphics primitive in 3D {
compute bounding shape in screen space
rasterize bounding shape
for each pixel in bounding shape {
compute direction in 3D
intersect ray with 3D primitive
if (intersection) {
interpolate depth, color...
output fragment

} else {
discard fragment

}
}

}

Figure 2: The algorithm for non-linear rasterization.

is inside or outside the original primitive using a ray-triangle inter-
section method.

Fragments that are back-projected outside the primitive are simply
discarded. Fragments that fall inside the original primitive are kept.
The ray-triangle intersection gives us the barycentric coordinates of
the 3D point corresponding to the current fragment. We use these
to interpolate the properties of the fragment, such as depth, normal,
color, texture... This interpolation is done over the original trian-
gle, using barycentric coordinates. We have to do the interpolation
in the original triangle, before projection, because of the non-linear
nature of the projection. Even the depth of the fragment has to
be interpolated on the triangle instead of in screen space. For ef-
ficiency, we only interpolate the useful values: e.g. only the depth
for a shadow map.

There are two main steps in the algorithm: computing an efficient
bounding shape, and testing each fragment for rejection. The for-
mer is done by the geometry engine. We have designed two meth-
ods for this task: one using triangles (section 3.3), the other using
quads (section 3.4). The former offers tighter spatial bounds, while
the latter has a smaller geometric complexity. Testing fragments
for rejection is done in the fragment engine, and uses a ray-triangle
intersection method (section 3.5) [Möller and Trumbore 1997].

In section 3.2, we review the generic properties of our non-linear
projections. We prove that for each of them, the projection of a
triangle is a curved triangle.

3.2 Non-linear Projections

We are working with specific non-linear projections, namely pro-
jections with a single center of projection, depending only on the
direction to the projected point, with radial symmetry. As a conse-
quence, they are all defined by an equation in the form r = f (θ).
From a direction in 3D, expressed in spherical coordinates (θ,φ ),
we get a position in screen space expressed in polar coordinates
(r, φ). We add the restriction that the function f must be convex.
Table 1 lists interesting non-linear projections we have identified
that fall in this class, along with their equations.

As all our projections being defined by r = f (θ), we can visualize
them as a surfaces of revolution S , of equation:

z =
r

tan θ
=

f (θ)
tan θ

(1)

Computing the projection of a point M is equivalent to finding the
intersection between S and the (OM) line, then projecting this in-
tersection to the projection plane (see Fig. 4(d)).
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Name Equation Surface Properties

Cos-Sphere r = sin θ

Useful for indirect lighting: the screen size of the ob-
jects is proportional to their solid angle times the cosine
of the angle with the normal. Combined with their radi-
ance, stored in each pixel, we get the incoming indirect
lighting from the picture created

Paraboloid r = 1−cos θ
sin θ

Projects a half-universe onto a disc with minimal area
and angular distortions.

Fish-Eye (1) r =
√

2 sin θ2
Fish-eye lenses are used in photography to give a view
of the half-universe, with some distortions. This form of
fish-eye lenses is the most common in fish-eye lenses.

Fish-Eye (2) r = 2
π
θ

This form of fish-eye lenses is regarded by some as bet-
ter than the previous, but is very hard to make in camera
lenses.

Lambert r =
√

1 − cos θ

A Equal-area projection: the screen space area of ob-
jects is proportional to the solid angle they subtend,
making this the ideal projection for ambient occlusion
fields.

Table 1: The non-linear projections we have identified, with their mathematical definition and properties. Each projection transforms a point
in spherical coordinates (ρ,θ,φ ) into a point expressed in polar coordinates (r = f (θ), φ).

We consider an triangle in 3D space, [ABC], and are interested in
its projection in screen space. The projection of each line (AB) is
simply the intersection between the plane (OAB) and the surface S .
As the function f is convex, this intersection is in a single piece.
Thus, each line in 3D space projects to a single continuous curve in
screen space. As a consequence, each triangle in 3D space projects
to a single curved triangle in screen space.

3.3 Triangle bounding shape

A'

B'

Figure 3: (left) Enclosing a curved triangle with three lines, (right)
We bound each edge using a line tangent to the curved edge.

In this section, we compute a triangle-based bounding shape for
the projection of a 3D triangle. We treat each edge of the 3D tri-
angle separately. For each edge, we generate an oriented line in
screen space, such that the curved edge is included into its half-
space. Combining these three lines gives us a triangle in projection
space, that encloses the projection of the triangle (see Fig. 3).

Most of the time, this method does not change the number of ver-
tices in the primitive: a triangle is converted into a triangle. If the
triangle is clipped by the projection boundary, however, it can re-
sult in two triangles being generated (see Fig. 4(a) and (b)). And for
some elongated triangles, the non-linear projection results in angles
larger than π (see Fig. 4(c)); such triangles have to be subdivided,
and each of the new triangles can also be clipped, resulting in up to
4 triangles being generated.

3.3.1 Bounding each edge

We start with an edge [AB] of the original primitive. We know the
projection of its endpoints, A′ and B′, as well as the linear edge
[A′B′] connecting them in projection space. This linear edge is not
equal to the projection of [AB], the curved edge [Â′B′], but the two
are connected at the endpoints.

The distance between them is therefore null at A′ and B′, so it must
have at least one extremum between A′ and B′. For our non-linear
projections, using mathematical analysis (section 4), we can prove
that this extremum is unique, and compute its position.

We then check the respective positions of this extremum and the
triangle with respect to the line [A′B′]. If the extremum and the
triangle are on the same side of the line, then [A′B′] is an acceptable
bounding line for this edge. Otherwise, the line parallel to [A′B′]
passing through this maximum point is the bounding line. As we
used lines parallel to the original lines, the resulting set of lines
gives us a triangle in projection space, that encloses the projected
triangle (see Fig. 3).

3.3.2 Clipping by the projection boundary

We have to do a specific treatment when the original triangle is
clipped by the projection boundary:

• When two vertices are clipped, we are left with a curved tri-
angle, whose edges are the clipped edges and the boundary of
the projection space (see Fig. 4(b)). We treat this triangle as a
normal triangle.

• When a single vertex is clipped (see Fig. 4(a)), we have a
quadrangle in 3D space, the projection boundary being the
extra edge. This corresponds to 2 triangles. We treat each of
these triangles separately, thus doubling the number of ver-
tices.
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Figure 4: In some circumstances, we need to add extra vertices to the enclosing shape. (a) one of the vertices is clipped by the projection
boundary, creating 2 triangles in 3D, so it is replaced by two larger 2D triangles, resulting in 3 extra vertices. (b) two vertices are clipped by
the projection boundary, we keep a single triangle. (c) after projection, some angles are larger than π. We need to subdivide these, resulting
in two triangles (which can also be clipped). Hence the maximum output is four triangle for each input triangle. (d) The projections we have
identified can be expressed as surfaces in 3D. Projecting an edge is equivalent to finding the intersection between this surface and a plane,
then projecting this intersection on the projection plane. Here, the cosine-sphere projection, where the surface is a hemisphere, and x, y the
axis of a supporting ellipse.

3.3.3 Angles larger than π

In some circumstances, the projection of a triangle is a curved
triangle where the angle between the edges is larger than π (see
Fig. 4(c)). These usually corresponds to thin triangles that are close
to the horizon. This situation makes it impossible for our three
bounding lines to connect into a triangle that contains the curved
triangle. When we detect that case, we subdivide the original trian-
gle, and bound each triangle separately. This case can not happen
on any of the triangles after the subdivision, because we subdivide
at the problematic angle: the angle at the new triangles is half the
angle at the original triangle, thus smaller than π.

3.3.4 Analysis

In most circumstances, this method replaces a triangle with another
triangle. When the curved triangle is close to a linear triangle, the
bounding triangle will be close to the curved triangle, resulting in
a smaller overdraw. However, in the worst case, a triangle can be
clipped by the projection boundary, then each of the triangles will
be split because of an angle larger than π after projection, resulting
in 4 triangles being output for a single 3D triangle. As the speed
of the geometry engine depends on the maximum number of trian-
gles that the shader can output, this worst case is slowing down the
triangle-bounding method significantly.

3.4 Quad bounding shape

We now bound the curved triangle by a quad. We start by treating
each edge of the 3D triangle separately. For each edge, we compute
a bounding quad that encloses the curved edge. We then compute
a bounding box or a bounding quad for these bounding elements.
This method results in a larger overdraw, but it is also more robust,
as it does not require line intersections. Since it consistently outputs
a single quad for each triangle, the geometry pass is roughly three
times faster than with the previous method.
For each edge: we compute a bounding quad, using the geometric
properties of the curved edge (obtained with a mathematical analy-
sis, see section 4).
Enclosing the triangle: is trivially done by union of their axis-
aligned bounding box. Other methods provide a tighter fit, at the
expense of computation time.

3.5 Fragment testing and interpolation

The main step in our algorithm is testing whether each fragment
actually belongs in the projected primitive; this step is identical to
previous work [Lloyd et al. 2006; Hou et al. 2006; Fournier 2005].
Our input is the coordinates of the current fragment, and informa-
tion about the original primitive in 3D: the vertices and the normal
to the plane. We first convert the fragment coordinates into a ray
direction in 3D space. As we have screen coordinates, it requires
computing the third coordinate, which depends on the projection
method.

This direction, combined with the projection center, defines a ray in
3D space. We test this ray for intersection with the original primi-
tive. We use for this the algorithm by Möller and Trumbore [1997],
as we have found it to be faster than other algorithms on modern
GPUs.

If there is an intersection, this algorithm also gives us the barycen-
tric coordinates of the intersection point. We use these to interpo-
late the coordinates and values for the point: depth, color, normal,
texture coordinates. Because of the non-linearity of the projection
method, none of these can be linearly interpolated in screen space.
We output these values, including depth in the z coordinate of the
fragment.

3.6 Implementation details

Computing the enclosing primitive for each 3D primitive is done
in the geometry engine. We take as input the coordinates of the
vertices, and output the 2D coordinates, in screen space, of the en-
closing primitive. The geometry shader outputs the vertices of the
enclosing shape in screen space. All the information about the orig-
inal primitive is output as constant parameters for this shape: ver-
tices, normal to the plane and characteristics such as color, normals
and texture coordinates. Testing whether a given fragment belongs
to the actual projection, as well as interpolating the values for each
fragment, is done in the fragment shader.

4 Mathematical Analysis of specific non-
linear projections

In this section, we conduct a mathematical analysis of specific non-
linear projections (see Table 1), and give the equation of the projec-
tion of a linear edge. All our projections are defined by r = f (θ),
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(a) Cosine-sphere: ellipse arcs. (b) Paraboloid: circle arcs. (c) Fish-Eye 1. (d) Fish-Eye 2.

Figure 5: Non-linear projections convert straight lines in 3D into curves in screen space.

and we can visualize them as a surfaces of revolution S (see equa-
tion 1).

Computing the projection of a point M is equivalent to finding the
intersection between this surface S and the line (OM), then pro-
jecting this intersection to the projection plane. In all this section,
we consider an edge in 3D space, [AB], and we are interested in
its projection in screen space (see Fig. 4(d)). The projection of the
supporting line (AB) is the intersection between the plane (OAB)
and the surface S . Noting n the normal to the plane (OAB), with-
out loss of generality we can orient the coordinate system in screen
space so that the x axis is aligned with n. n is defined by its angle
with the z axis, α, and the equation of the plane (OAB) is:

x sinα + z cosα = 0 (2)

The intersection of the plane and the projection surface is:

x = − r
tan θ tanα

(3)

In screen space, we have (by definition of r):

x2 + y2 = r2 = f (θ)2 (4)

4.1 Cosine-Sphere Projection

For the cosine-sphere projection, we have r = sin θ, and thus:

x = − cos θ
tanα

cos θ = −x tanα
r2 = 1 − x2 tan2 α

Plugging this into equation 4, we get:

x2

cos2 α
+ y2 = 1 (5)

Thus the projection of a line is an ellipse arc (see Fig. 5(a)). The
ellipse is centered on the center of projection O, whose great axis is
the intersection of the plane (OAB) with the projection plane. This
ellipse is the projection of a circle in the plane (OAB) (the inter-
section between this plane and the hemisphere). This information
helps in finding enclosing shapes.

• for an enclosing line: instead of considering the ellipse arc in
projection space, we consider the circular arc defined by the

intersection of the plane (OAB) and the sphere S . Computing
the tangent to that circular arc at any point is easy, through a
rotation of π/2 in the plane. We use the middle of the circle
arc, then take its tangent in the (OAB) plane. The projection
of the tangent to the circle is the tangent to the ellipse.

• for an enclosing quad: we have the projections of the end
point of the ellipse arc, and the axis of the ellipse. We use
these to create a bounding quad.

4.2 Paraboloid Projection

For the paraboloid projection, we have:

r =
1 − cos θ

sin θ

r2 =
1 − cos θ
1 + cos θ

x tanα = − r
tan θ

= − cos θ
1 + cos θ

r2 + x tanα =
1

1 + cos θ
= 1 + x tanα

r2 = 1 − 2x tanα

Plugging this last result into equation 4, we get:

x2 + y2 = 1 − 2x tanα
(x + tanα)2 + y2 = 1 + tan2 α

(x + tanα)2 + y2 =
1

cos2 α
(6)

Thus the projection of a line is a circle arc (see Fig. 5(b)). The circle
is centered on the x axis (defined by n), at a distance − tanα of O,
with a radius equal to 1/ cosα. This information makes it easy to
find enclosing shapes:

• for an enclosing line: we know the endpoints of the arc, and
the center of the circle. We can easily find the middle of the
arc, C, and the tangent to the circle at C is an enclosing line.

• for an enclosing quad: as we know the endpoints of the arc
and the center of the circle, it is easy to find an enclosing quad.

4.3 Fish-Eye Lenses (1)

For the first type of fish-eye lenses, we have r =
√

2 sin(θ/2). Ob-
taining an equation for the curves generated is tricky. Using

x tanα = − r
tan θ
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Figure 6: Generic bounding strategy: we enclose each curved edge
by its secant [A′B′] and a circle arc, whose radius is equal to the
maximum radius on the edge, then enclose the circle arc by its tan-
gent.

we obtain easily:

x tanα =
1 − r2

√
2 − r2

(7)

To invert this equation, we use the change of variables u = 1 − r2

and a = x tanα. We can solve the resulting polynomial in u:

u =
a
2

(
a −
√

a2 + 4
)

Replacing u by 1 − (x2 + y2), we get the equation of the curve in
cartesian coordinates:

y2 = 1 − x2 − x tanα
2

(
x tanα −

√
x2 tan2 α + 4

)
(8)

Which defines a convex curve, symmetric with respect to the x axis.
r is maximal for x = 0 (r = 1), minimal for y = 0 (see Fig. 5(c)).

To find an enclosing quad, we do not need to actually compute this
equation, though. We first find the projection of the endpoints. The
secant (the line joining the endpoints in screen space) gives us one
of the sides of the quad. We take two lines orthogonal to the secant
for two other sides. For the remaining side, we take the maximum
value of r (which is reached at one of the end points, build a circle
arc of radius r with the same angular extent, and take a line that
encloses this circle (see Fig. 6).

4.4 Fish-Eye Lenses (2)

For the second type of Fish-Eye lenses, we have r = 2θ/π. Thus we
have easily θ as a function of r, but we didn’t find a simple equation
for the curve expressed in Cartesian coordinates. However, we can
express the equation of the curve in polar coordinates (r(φ), φ):

cos φ = − 1
tan θ tanα

r = − 2
π

arctan
(

1
cos φ tanα

)

r = 1 +
2
π

arctan (cos φ tanα)

This function r(φ) defines a convex curve (see Fig. 5(d)), symmetric
with respect to the x axis. r has a single minimum, on the x axis,
where r = 1 − 2

π
α and two maxima on the y axis, where r = 1.

This information makes it possible to find an enclosing quad for
each projected edge (see Fig. 6). We know the projection of the
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Figure 7: Time spent in each step of the algorithm, for several
projections and bounding methods (Facade scene, 2800 triangles).

endpoints. The secant line forms the basis of our quad, and two
lines orthogonal to the secant form the sides. For the last line, we
take the maximum value of r in the interval (which is at one of
the endpoints), then take a tangent to a circle with this radius. The
resulting quad encloses the edge, although it is over-conservative.

4.5 Lambert conformal projection

Although the equation of Lambert’s conformal projection looks
very different from the equation of the first fish-eye projection, the
two surfaces of revolution they give are identical, and the two pro-
jections are actually the same (because 1 − cos θ = 2 sin2 θ

2 ). Thus
the strategy designed for the first type of fish-eye lenses will also
work for Lambert Conformal projection.

4.6 Generic bounding strategy

Our observation of four sample non-linear projections brings us to
devise a generic bounding strategy, that should work for most non-
linear projections in our class. We observe that for all the projec-
tions we have found, the projection of a line is a convex curve,
symmetric with respect to the x axis, with a radius equal to 1 for
x = 0, and a radius minimal for y = 0. Assuming these properties
hold for a particular projection method, the bounding strategy used
for both Fish-Eye lenses projections will work (see Fig. 6):

• project the endpoints of the edge,

• the line joining these endpoints in screen space provides one
side of the bounding quad,

• two lines orthogonal to the secant provide two other sides,

• finally, for bounding the external side of the curve, we take the
maximum radius (which is reached at one of the endpoints),
build a circle arc with that radius and the same angular extent
as the projection of the edge and take the tangent at the middle
of this arc.

This method may result in substantial overdraw (the bounding quad
is much larger than the projection of the edge).

5 Results and Discussion

All the timings in this section were computed on a Core 2 Duo at
2.4 GHz, and the latest mid range graphic card (Nvidia 8800 GT /
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512 MB / driver 169.02).

5.1 Test scenes

We have chosen 4 input scenes, with varying object complexity,
ranging from a relatively low number of primitives up to 560K tri-
angles. The first one, Facade (see Fig. 10, in the color section),
is showing a city street with a small number of textured polygons.
By varying the level of detail on the houses, we make the polygon
count vary from 600 to 4900 triangles. The second one, Temple
(see Fig. 8(a), in the color section), consists of 4K triangles. It is
our overdraw “worst case”, because it consists of columns, made of
many thin triangles. The third one, Characters (see Fig. 9, in the
color section) contains some high-resolution characters on a sim-
ple background. The last one, Patio (see Fig. 8(b) and (c), in the
color section) is a large furnished room, with 560K triangles. It has
both large polygons (for the floor, the walls and the roof) and tiny
polygons, e.g. for the leaves of the plants and the furnitures.

5.2 Cost for each step of the algorithm

Our first goal is to understand how the GPU is working on our al-
gorithm, and to identify the bottlenecks depending on the test scene
and the projection. In this section, we are testing a full rendering,
with shadow mapping inside the projection and per-pixel lighting.
We have run our program in several degraded rendering modes, to
identify the cost for each step. For example, to measure the cost
of the geometry shader, we run the program without a geometry
shader, measure the rendering time and compare with the render-
ing time with the geometry shader. We did the same thing with no
fragments output, no lighting computation, no shadow map com-
putation and not texturing the output. We also measured the total
number of fragments accessed by the algorithm (using occlusion
queries), and compared it with the number of fragments output, to
measure the amount of overdraw caused by our method. We com-
pared these timings with the classical GLSL pipeline, with shadow
mapping and per-pixel lighting, but with no geometry shader.

Table 3 and Fig. 7 show our results, for our test scenes and for sev-
eral projection methods1. One important and expected result is that
the geometry step takes longer for the triangle bounding strategy
than for the quad bounding strategy (approximately twice as long).
This is due to the worst case scenario for the triangle bounding
strategy, which corresponds to four triangles being created, whereas
the quad bounding strategy consistently outputs two triangles. The
time spent in the ray-casting step is related to the amount of over-
draw: we have to shoot a ray for each pixel in the bounding shape.
In this step, the triangle bounding strategy outperforms the quad
bounding strategy, because of a smaller amount of overdraw. The
two fish-eye lenses methods perform very poorly for this particu-
lar scene, because of the huge amount of overdraw they generate.
Lighting corresponds to the per-pixel lighting; unsurprisngly, it is
more or less constant for all projection methods, including the stan-
dard method with per-pixel lighting. Perhaps the more surprising
result is that the shadow mapping step takes much longer with the
triangle bounding strategy than with the quad bounding strategy.
We are still investigating this, but we suspect that elongated trian-
gles result in frequent cache misses in the shadow map. Finally, the
time in the texturing step is also related to the amount of overdraw,
because we have to transfer the information needed to compute tex-
ture coordinates for each fragment accessed, even if it’s going to be
discarded. The amount of information transferred is slowing down
the fragment shader.

1A file containing all our results and measurements is also included in
the supplemental materials.

Color Depth Coverage
(ms) (ms) (ms)

6 × 512 × 512 cubemap 2590 548 490
2 × 512 × 512 paraboloids 716 157 121
6 × 16 × 16 cubemap 8.8 5.2 4.8
2 × 16 × 16 paraboloids 3.4 2.6 2.4
5 × 512 × 512 hemicube 1500 375 320
1 × 512 × 512 paraboloid 375 79 61
1 × 512 × 512 sphere map 433 71 61
1 × 512 × 512 Lambert 396 80 67
5 × 16 × 16 hemicube 7.1 4.3 4.0
1 × 16 × 16 paraboloid 2.5 1.9 1.6

Table 2: Comparison between hemicube/cube rendering and non-
linear projections (in ms) (Facade scene, with 1900 triangles).

In Table 3, the results for our largest test scene (the Patio) show that
the cost of the geometry step has increased dramatically. This may
be a limitation for using our algorithm on very large scenes.

5.3 Comparison with hemicube/full cube

One of the key uses of non-linear projections is to render a full
view of the virtual world, e.g. for environment mapping, for indi-
rect lighting or for shadow maps for omnidirectional light sources.
For these applications, the other usual method is to compute a
hemicube, if you need a view of the half-universe, or a full cube
if you need information for all the directions. The drawback is that
the hemicube requires 5 different linear projections, and the full
cube, 6.

We have run a comparison between non-linear projections and
hemicube or full cube rendering of our test scenes (see Fig. 9 and
Table 2). We computed the hemicubes and full cubes using the
fastest method (at the time of writing), inside a Frame-Buffer Ob-
ject. We can compare either a full cube rendering with two non-
linear projections, or a hemicube with a single non-linear projec-
tion. We have tested computing environment maps (with per-pixel
lighting and shadow mapping), shadow maps (just computing the
depth of the fragment) and coverage maps (just testing whether the
fragment is covered or not).

The main result is that the non-linear projections consistently out-
perform the hemicube and the cube rendering. For this test scene, it
seems that the time required to create each projection and view frus-
tum is slowing down the hemicubes rendering. This result may not
hold for larger scenes, if the rendering becomes geometry-limited,
but it is important in that it shows that non-linear projections are a
practical alternative to hemicube or cube renderings.

5.4 Overdraw

As our method encloses the curved projection of each primitive in a
larger one, there is a certain amount of overdraw. Fig. 9 shows the
pixels accesed by our algorithm, for the two bounding methods.
Red/Green display the barycentric coordinates computed, while
blue shows discarded pixels. Several important informations are
visible in these pictures: first, for the smaller triangles in each of the
hi-resolution characters, the triangle bounding method provides an
almost perfect fit, resulting in a low percentage of overdraw, 37 %.
Second, the triangle bounding method results in some very elon-
gated triangles, which has a bad effect on caching schemes. Third,
the front-most triangle of the ground has been clipped, and replaced
by two triangles. Fourth, altough the quad bounding method gener-
ates a larger overdraw (107 %), it still runs faster on this scene.
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covered rendered overdraw vertex geometry raycasting lighting shadow texturing Total Ratio
(K pix) (K pix) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

GL 249 0% 0.40 - - 0.33 0.06 0.45 1.25 100%
ST 308 173 78% 0.41 0.57 0.13 0.34 0.57 0.24 2.25 180%
PT 406 197 106% 0.41 0.69 0.16 0.39 0.70 0.17 2.52 202%
SQ 897 173 418% 0.41 0.40 0.33 0.44 0.26 0.36 2.20 176%
PQ 714 181 294% 0.40 0.36 0.29 0.42 0.22 0.37 2.06 165%
Lens1 5089 172 2859% 0.40 0.47 2.55 0.53 0.61 0.65 5.21 417%
Lens2 5006 172 2810% 0.40 0.44 2.00 0.79 0.49 0.62 4.74 379%
600 702 181 288% 0.39 0.16 0.26 0.44 0.17 0.13 1.55 128%
2800 714 181 294% 0.40 0.36 0.29 0.42 0.22 0.37 2.06 165%
4900 786 182 332% 0.45 0.52 0.29 0.43 0.27 0.49 2.44 185%
Temple PQ 1950 250 680% 0.17 0.33 0.77 0.63 0.42 0.57 2.88 461%
Patio PQ 1271 335 279% 7.55 31.47 0.86 0.24 5.93 38.28 79.85 600%

Table 3: Rendering times for our algorithm, with the cost of the different steps. The first 7 lines are for the Facade scene (2800 triangles),
for several projection methods: GL (standard GLSL rendering with per pixel lighting), Sx is Spherical map; Px is Parabola map; xT uses
triangles enclosing shape; while xQ uses quad bounding box. The next three lines are for Facade with different scene complexity for the PQ
algorithm. The last two lines are for larger scenes.

6 Conclusion and Future Directions

In this paper, we have presented a robust algorithm for handling
specific non-linear projections inside the graphics pipeline. Our
algorithm works both for direct display of the non-linear projection,
e.g. a fish-eye lens inside a video game, or for indirect use, e.g.
when rendering a shadow map with a paraboloid projection.

As with previous work, we start by bouding the projection of each
shape, then discard extra fragments inside the bounding shape. Our
contributions are twofold. First: two different methods for bound-
ing the non-linear projections, one based on triangles that is opti-
mal in fragments but requires more work in the geometry engine,
the other based on quads that is optimal for the geometry engine
but can causes more overdraw. Second: a mathematical analysis of
several non-linear projection methods, where we show that some
of them have simple expressions, and thus lend themselves to easy
bounding through geometric tools.

Although non-linear projections are slower than linear projections,
the extra cost is manageable. As a single non-linear projection can
replace up to five linear projections (in a hemicube), it can even be
a practical alternative, both for rendering time and memory cost.

Acknowledgements

The authors wish to thank the anonymous reviewers for their valu-
able comments.
Nicolas Holzschuch is currently on a sabbatical at Cornell Univer-
sity, funded by the INRIA.
Part of this research was carried within the ARTIS research team;
ARTIS is a research team of the INRIA Rhône-Alpes and of the
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